PhD Thesis

Google Doc : https://docs.google.com/document/d/160-2YyBr4ySwOJmqmposeAf14kauJQxw/edit

ACKNOWLEDGEMENTS i

ABSTRACT iii

DECLARATION v

LIST OF TABLES x

LIST OF FIGURES xii

ABBREVIATIONS xiv

SYMBOLS/ NOTATIONS xvii

Chapter 1(Introduction)

Google Doc: https://docs.google.com/document/d/1wEiJ604IvPsaKvilTxei7wYQmE1dOE_7/edit

    • subtopic

    • subtopic

Chapter 2(Literature Review)

Google Doc: https://docs.google.com/document/d/10tP-xjBArKgMEwYiLWlyBXkJn41_gsph/edit

    • sub topic

    • sub topic

    • sub topic

Chapter 3 (Developing Tourist Forecasting System (TFS) )

Google Doc: https://docs.google.com/document/d/1dGnQaE0sQgtN0nPc9Dlm_gB5xC-xMpHR/edit

    • sub topic

    • sub topic

    • sub topic

Chapter 4 (Developing Tourist Spot Recommendation System (TSRS) )

Google Doc: https://docs.google.com/document/d/1gjy0vm-9qoH0KLztuDsEWvj_oa5KMZJB/edit

    • 4.1 Introduction

      • 4.2 Overview of Existing Approaches

        • 4.2.1 Sentiment Analysis

        • 4.2.2 Support Vector Machines (SVM)

        • 4.2.3 Bayesian Network

        • 4.2.4 Outlier detection-based classification

      • 4.3 Proposed System

      • 4.3.1 Data collection

        • 4.3.2 Pattern Classification

        • 4.3.3 Proposed algorithm

      • 4.4 Experimental Results and Discussion

        • 4.4.1 Energy consumption data collection and system setup

        • 4.4.2 Data classification using LM-based neural network classifier

        • 4.4.3 Results and verification

        • 4.4.4 True positive and false positive test results

        • 4.4.5. Comparison of the proposed approach with existing methods

    • 4.5 Summary

Chapter 5 (Developing Tourist Path Prediction System (TPPS) )

Gooogle doc: https://docs.google.com/document/d/1I0VGTeIdUPcsQBOAoMZCz66yEBuHIet1/edit

    • Approach

    • 5.1 Introduction

    • 5.2 Proposed System

      • 5.2.1 Data Collection and Preprocessing

      • 5.2.2 Linear and Non-linear Regression Model

      • 5.2.3 Back-propagation Artificial Neural Network

      • 5.3 Experimental Results and Discussion

        • 5.3.1 Prediction of Tourist Forecasting using Multiple Regression Analysis

        • 5.3.2 Prediction of Tourist Forecasting using LMBP-ANN

      • 5.4 Comparison of Regression and LMBP-ANN Model

      • 5.5 Summary

Chapter 6 (Developing Tourist Observation System (TOS) )

Google Doc: https://docs.google.com/document/d/19QY0xccf2RKOmrTVeTINfNZYyR73e0Mo/edit

    • 6.1 Introduction

    • 6.2 Overview of Existing Prediction Methods

    • 6.3 Design of Prediction Models

    • 6.4 Proposed Approach for Cement Strength Prediction

    • 6.5 Experimental Results and Discussion

    • 6.5.1 Performance Indexes

    • 6.5.2 Computation of Hidden Nodes

    • 6.5.3 Performance Analysis Comparison of Existing results and Proposed Approach results.

    • 6.5.4 Performance Analysis of Existing Methods

    • 6.5.5 Performance Analysis of Proposed Approach

    • 6.5.6 Training Performance

    • 6.6 Comparison of Computational Time for Existing and Proposed Approach

    • 6.7 Summary

Chapter 7 (Conclusion, Contributions, Limitations, and Future Scope)

Google Doc: https://docs.google.com/document/d/1Bzk54m0iL9Pf4vuSMbW42R0GVSBV2KTP/edit

7.1 Conclusion

    • 7.2 Contributions of the Present Research Work

    • 7.3 Limitations

    • 7.4 Directions for Future Works


References

Google doc: https://docs.google.com/document/d/1wJ_buYB1VsmWz1_Uvpw3ducDq6YSzlly/edit

Appendix

Google Doc: https://docs.google.com/document/d/14ep23cRUaDKTsbjf8LWTq4Ki220T7n7y/edit

  • Appendix A: Experimental Setup

  • Appendix B: Python3 Functions and Available Toolboxes

  • Appendix C: Algorithms

  • Appendix D: Data Classification Performance Measures

  • Appendix E: The linear and non-linear regression model

  • LIST OF PUBLICATIONS AND PRESENTATIONS

  • BIOGRAPHY OF THE CANDIDATE

  • BIOGRAPHY OF THE SUPERVISOR